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Distribution of the wave function inside chaotic partially open systems
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We demonstrate both theoretically and experimentally that the distribution of the wave function inside a
partially open chaotic time reversal symmetric system displays significant deviations from the Porter-Thomas
distribution. We give arguments which show that this distribution resembles the distribution which is expected
to be found in closed chaotic systems with broken time-reversal symmetry.@S1063-651X~97!05709-7#

PACS number~s!: 05.45.1b
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It is now generally accepted that in the ballistic regime
scattering on boundaries of a chaotic mesoscopic quan
dot leads to irregular scattering phenomena which are m
surable during the transport of electrons through the d
Usually it is assumed that ideal leads are attached to
quantum dot and the conductanceG is evaluated using Lan
dauer formula relating the conductance with the correspo
ing S matrix

S5S r t

t8 r 8
D , ~1!

where r ,t are the reflection and transmission matrices.
terms ofS matrix the conductance reads

G5
e2

h
Tr~ tt1!. ~2!

Essentially the same mechanism can be applied also to
transmission of microwaves through irregularly shaped ca
ties. In this caseG denotes the total transmission probabil
~of course in this case the factore2/h has to be omitted!. The
microwave experiments have the advantage that all com
nents of the scattering matrix are obtained directly from
measurement, and that scattering geometries can be e
varied in a controlled manner. Therefore the results to
derived below will be tested using results from microwa
cavities containing randomly distributed scatterers.

Investigating conductance fluctuations the standard a
ment assumes that theS matrix belongs to some random
matrix ensemble@usually the circular orthogonal~COE! or
unitary ~CUE! ensemble#. There is, however, also anothe
aspect of the statistical properties of theS matrix elements
which relates theS matrix elements with the internal wav
function.
561063-651X/97/56~3!/2680~7!/$10.00
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TheS matrix maps the incoming waves into the outgoi
ones. Therefore knowingS and the structure of the incomin
part of the wave inside the leads one can easily evaluate
value of the wave function at the points where the lea
couple to the resonator. Since we assume an ideal coup
of the leads on the quantum dot the wave function is smo
at the coupling points. This means that the internal wa
function atthe coupling pointsequals the wave function in
side the leads. Therefore from a knowledge of the statist
properties of theS matrix we can obtain information abou
the properties of the internal wave function.

It is the aim of this work to develop the above heuris
arguments and to show to what extent the transport thro
the dot changes the structure of the wave function. Let
start with some remarks: the important role of the inter
wave function during the transport through weakly open s
tems~resonance transport! has been used in@1,2# to investi-
gate the statistical properties of the conductance. In th
papers the applied strategy was however just opposite
what we try to do here: the conductance distribution w
obtainedassumingthat the internal wave function is chaot
and has a Porter-Thomas distribution. On the other ha
there are also works which followed the same strategy
used the measuredS matrix to determine the internal wav
function, see for instance@3,4#. It has to be stressed, how
ever, that in all these cases the investigations are restricte
the resonance scattering regime and the influence of
transport on the structure of the internal wave function h
been neglected.

To begin the investigation let us first construct a simp
Hamiltonian which leads to theS matrix usually being used
as a starting point for the description of transmission fluct
tions. Starting with the description of the leads we assu
that they supportM open channels and are described
one-dimensional Hamiltonians
2680 © 1997 The American Physical Society



to

er

-

a
ls

an

t

e
o-
ve
i

-
a
-
ca

it

he
e

ur
l
s
,
l-

de

ith

er-
t

an-

r at

the
r to
s

n-

as

as

int
we
ions

n-
ve

nal
t to

56 2681DISTRIBUTION OF THE WAVE FUNCTION INSIDE . . .
Hl52
d2

dx2
1l l , l 51, . . . ,M . ~3!

Here l l is the threshold energy of thel th channel andx
denotes the coordinate along it. Combining these opera
into a HamiltonianHex for the ‘‘external’’ part of the system
we get

Hex521
d2

dx2
1L, ~4!

whereL is a diagonal matrix describing the threshold en
gies of the channels,

L5diag~l1 ,l2 , . . . ,lM !, ~5!

and 1 is the M3M identity matrix. The resonator is de
scribed by a Hermitian matrixH in of size N3N, whereN
corresponds to the number of eigenenergies taken into
count, withN much larger than the number of open channe
N@M . The matrixH in is assumed to belong to the Gaussi
orthogonal or unitary ensemble~GOE or GUE! for chaotic
cavities ~see, e.g.,@5# for these concepts!. To describe the
scattering we couple the resonator and leads by defining
HamiltonianH of the whole system as

HS u

uin
D 5S Hexu

H inuin1Au8~0!
D , ~6!

whereu5(u1 , . . . ,uM) stands for the wave function insid
the leads anduin describes the wave function within the res
nator. u8(0) denotes the vector of derivatives of the wa
functions inside the leads taken at the points of contacts w
the resonator~i.e., at zero of each lead coordinate!. A is the
N3M coupling matrix. Later on we will specify the cou
pling matrix A by assuming that the coupling has a loc
character~point contacts!. This assumption is justified when
ever the diameter of the junction is smaller than a typi
wavelength inside the resonator.

Let us now return to the HamiltonianH. In the form it is
given by Eq.~6! the operator is not symmetric. To make
symmetric an additional boundary condition is needed:

A†uin52u~0!. ~7!

It is not difficult to show that under these conditions t
HamiltonianH is a self-adjoint operator — for the proof se
@6#.

Before proceeding further we have to specify the struct
of the internal Hamiltonian matrixH in . On the most genera
level we assume only that this matrix belongs to the Gau
ian orthogonal~unitary! ensemble. Less abstractly it will be
however, helpful to construct this matrix using the know
edge of the specific properties of the resonator in consi
ation. To specifyH in we use the HamiltonianH res of the
resonator~usually a two-dimensional Laplace operator w
Dirichlet boundary conditions!. Let En and f n(rW) be the ei-
genvalues and eigenfunctions ofH res,

H resf n~rW !5Enf n~rW !. ~8!
rs
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Using these solutions we define a finite dimensional int
nal Hamiltonian acting on the space spanned by the firsN
eigenstates ofH res,

H in5 (
n51

N

Enf nf n
† . ~9!

The coupling operatorA maps the vectoru8(0) into a
certain function belonging to theN dimensional internal
space. Let u(x)5@u1(x),u2(x), . . . ,uM(x)# denote the
components of the wave function in the attached open ch
nels. Applying the matrixA to the incoming vector we get

Au8~0!5 (
m51

M

(
n51

N

um8 ~0!Anmf n

5a1d1
N~rW !u18~0!1a2d2

N~rW !u28~0!

1•••1aMdM
N ~rW !uM8 ~0!, ~10!

wherea ldl
N5(n51

N Anl f l ; a1, . . . ,aM are the coupling con-
stants of the individual channels anddl

N , l 51, . . . ,M are
functions spanned by the vectorsf n ,n51, . . . ,N. In the ex-
periment the channels are locally coupled to the resonato
pointsrW1, . . . , rWM . HererW1, . . . , rWM refer to the coordinate
system chosen inside the resonator and correspond to
zero points of the coordinates inside the leads. In orde
mimic this local coupling we choose the function
dl

N(rW),l 51, . . . ,M in a special way which ensures their co

vergence tod(rW2rW l) for N→`, namely

dl
N~rW !5(

i 51

N

f i~rW l ! f i~rW !. ~11!

In the sense of generalized functions one h
limN→`dl

N(rW)5d(rW2rW l).
At this point few remarks are necessary: First of all it h

to be stressed that now the coupling matrixA is completely
determined byM constantsa1, . . . ,aM . The boundary con-
dition ~7! now takes the form̂ a ldl

N ,uin&52ul(0), where
^,& denotes the scalar product in theN-dimensional Hilbert
space of functions inside the resonator. In the limitN→`
these boundary conditions are thus given by the formula

a luin~rW l !52ul~0!, ~12!

which relates the internal wave function at the coupling po
to the wave function inside the corresponding lead. If
assume that the contact is ideal, i.e., that the wave funct
match smoothly at the contact,uin(rW l)5ul(0), we obtain
a l521 for all l . The components of the coupling matrixA
are then given by

Alm52 f l~rWm!. ~13!

Equation~12! becomes a starting point for a further co
sideration of the statistical properties of the internal wa
function.

Since the information about the structure of the inter
wave function is hidden in the scattering data we have firs
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2682 56ŠEBA, HAAKE, KUŚ, BARTH, KUHL, AND STÖCKMANN
evaluate the correspondingS matrix. Following@6# we solve
the equationHU5EU for a scattering energyE. The eigen-
function

U~E!5S u~E,x!

uin
D ~14!

solves the equations

S 2
d2

dx2
u~E,x!1Lu~E,x!

H inuin~E!1Au8~E,0!
D 5ES u~E,x!

uin
D . ~15!

For energiesE.l j , j 51, . . . ,M , the scattering solution
inside the leads can be presented in the form

u~E,x!5
e2 iAE2Lx

4AE2L
Ainc2

eiAE2Lx

4AE2L
Aout, ~16!

whereAinc ,Aout are the amplitudes of the incoming and ou
going waves, respectively. For allE.max$lj% every solution
is bounded and the scattering matrixS(E) can easily be de-
fined. The normalization used in Eq.~16! ensures that the
S matrix relates the amplitudes of the incoming and outgo
waves as

Aout5S~E!Ainc . ~17!

The scattering matrix can be calculated substituting
~16! into Eq. ~15! and applying the boundary condition~7!
which leads to

S~E!5
i 1W†~E2H in!21W

i 2W†~E2H in!21W
, ~18!

whereW5AQ21 and Q[Q(E) denotes theM3M matrix
Q(E)5(E2L)21/4. This S matrix can be rewritten as@6#

S~E!5122iW†
1

E2Heff
W, ~19!

where Heff5H in1 iWW† stands for the effective, non
Hermitian Hamiltonian. The assumption on the point char
ter of the contact leads in the limitN→` to
Heff5H res1 i (n51

M an
2AE2lnd(rW2rWn). Effective Hamilto-

nians of this type has been used previously on a heur
level in @1# for the description of conductance fluctuations
quantum dots. In the present case, however, the couplin
the imaginary effective potential depends on energy~fre-
quency! of the incident wave. This fact has been observ
experimentally in@7#.

For the value of the external componentu(E,x) at the
coupling points we get from Eq.~10!

u~E,0!5Q~12S!Ainc , ~20!

and finally from Eq.~12! a relation between theS matrix and
the internal function:
g

.

-
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d

S uin~rW1!

uin~rW2!

A

uin~rWM !

D 5Q~S21!Ainc . ~21!

Relation~21! is valid not only for the case of a resona
scattering but also in situations with many overlapping re
nances. This can be understood when the formula is c
pared with previous results, where a relation between
resonance wave function and theS matrix was obtained for
the case of oneisolated resonance@1,2,4#. Relation ~21!
gives us the possibility to look for the structure of the inte
nal wave function in situations where theS matrix belongs to
certain ensembles of random unitary matrices.

In a typical experiment the wave is fed into the resona
through one of the attached channels — say through the
one — and the wave function is measured either by mea
ing the reflection in the entrance lead or the transmission
an exit lead. This means thatAinc5(1,0, . . . ,0) and

uin~rWk!5
1

~E2lk!
1/4

~S1k2d1k! ~22!

with k51 in the reflection case andk.1 in the transmission
case. Assuminglk to be constant~i.e., not varying from
sample to sample! we obtain finally that the statistics o
uin(rWk) coincides with the statistics of theS matrix elements
S1k .

It is widely accepted that the structure of theS matrix of
a chaotic system with time-reversal symmetry is describ
by a generalized circular ensemble~so-called Poisson kernel!
introduced by Gaudin and Mello@8#, see also@9#. The struc-
ture of this ensemble is fully determined by the mean va
^S& of theS matrix. The mean value describes the ‘‘quality
of the contact. It is related to the coupling matrixW by @10#

^Sll &5
12g l

11g l
~23!

with g l given by

(
n51

N

WnlWmn5d lmgm . ~24!

Note that the orthogonality relation~24! follows from Eq.
~13! and is satisfied whenever the distance between the
pling points exceeds the typical wavelength in the scatter
problem. In the case of ideal coupling we have^S&50 and
the ensemble coincides with the circular orthogonal
semble of Dyson. The relation between the Poisson ke
andS matrices of the form~18! is described in@11#.

The statistics of the correspondingS matrix elementsSkl
was evaluated in@12#. It was shown that for sufficiently large
M the S matrix elements can be regarded as statistica
independent. Moreover the real and imaginary part ofSkl are
independent Gaussian distributed variables.

Let us first consider a measurement of the transmiss
between leads 1 and 2. DenotingS125X1 iY and following
@12# we obtain
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P~S12!5
Aab

p
e2aX2

e2bY2
~25!

with a,b given by

a5
11^S11&^S22&

~12^S11&
2!~12^S22&

2!
,

~26!

b5
12^S11&^S22&

~12^S11&
2!~12^S22&

2!
,

and ^S11&,^S22& being the mean values of the correspond
matrix elements~they are assumed to be real for simplicity!.
Finally using Eq.~22! we obtain for the distribution of the
modulus of the normalized internal wave function at pointrW2
@13#

P~ uuinu2!5Zexp~2Z2uuinu2!I 0~ZAZ221uuinu2! ~27!

with

Z5
1

A12^S11&
2^S22&

2
. ~28!

A similar relation holds also for the reflection measu
ment. The internal wave function is studied using the ma
elementS11 which measures the direct reflection of the wa
into the incoming channel. For the distribution
S115X1 iY one has@12#

P~S11!5
Aab

p
e2a~X2^X&!2

e2bY2
~29!

with the coefficientsa,b given by

a5
11^S11&

2

~12^S11&
2!2

~30!

b5
1

12^S11&
2

and with^S11&5^X& denoting the mean of theS matrix ele-
ment. Using that we get for the distribution of the normaliz
internal wave function

^uin&512^S11& ~31!

and for the distribution ofũ in5uin2^uin&

P~ u ũ inu2!5Zexp~2Z2u ũ inu2!I 0~ZAZ221u ũ inu2! ~32!

with Z equal to

Z5
1

A12^S11&
4

. ~33!
-
x

In the COE case witĥS&50 ~ideal coupling of channels!
both distributions~27! and~32! lead to the Poissonian distri
bution

P~ uuinu2!5exp~2uuinu2!. ~34!

In the other extreme case of very weakly coupled ch
nels for which we havêS11&'^S22&'61 and henceZ→`,
which reduces Eq.~27! to the Porter-Thomas distribution

P~ uuinu2!5
1

A2puuinu2
expS 2

uuinu2

2 D . ~35!

The same holds also for the distribution~32! with
^S11&'61.

It is worth stressing that in the COE case the distribut
of the internal wave function coincides with the distributio
of eigenvectors of an GUE ensemble, i.e., with a case
fully broken time-reversal symmetry.

For a smaller number of channels the distribution of theS
matrix elements does not factorize and the distribution of
internal wave function cannot be found explicitly. Neverth
less it becomes clear that it depends strongly on the num
of open channels. For instance in the case of two ide
coupled channels~COE case! we obtain from@14#

P~ uuinu2!5
1

2A2puuinu2
. ~36!

Microwave billiards are especially well suited to test t
predictions on distributions of theS matrix elements@see
Eqs.~25! and ~29!# and of transmission and reflection pro
abilities @see Eqs.~27! and~32!#. All quantities entering into
these expressions are directly available from the experim
It is of special importance that there are only two paramet
namely the averageŝS11& and ^S22&. As these quantities
too, can be measured, there is no free adjustable parame
the theory.

FIG. 1. Rectangular billiard~45 cm 3 20 cm, height 0.8 cm!
with 13–17 movable scatterers of diameter 2 cm positioned at
dom on a 1838 grid. There are 16 fixed antennas~copper wires of
diameter 0.2 mm! connected to the billiard at randomly chose
points with a minimum distance of 2.5 cm.
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The measurements were performed in a rectangular
crowave resonator with 10–17 randomly distributed scat
ers; Fig. 1 shows a typical arrangement. The number of s
terers should be sufficient to block most of the bouncing b
modes in order to make the system chaotic; on the o
hand, the mean distance should be at least of the order o
typical wavelength. The measuring technique was descr
earlier@15,4#. A vector network analyzer, model 360B, Wi
tron company, was used supplying real and imaginary p
of all components of theS matrix.

To study the transport through the resonator 16 anten
~thin copper wires of diameter 0.2 mm! were put into the
resonator. The antennae act as single scattering channe
their diameter is small compared to the wavelength in
total frequency range. Only two antennae were really u
for reflection and transmission measurements. Through
antenna 1 microwaves are coupled to the resonator and
flection (S11) is measured. The transmission (S12) is mea-
sured with the help of the antenna 2 . All other antennae no
used are closed by 50V loads and act as drains for the m
crowaves.

In Fig. 2 parts of a typical measuredS11 spectrum are
shown. The qualitative difference between the nonoverl
ping regime at lower frequencies@Fig. 2~a!# and the overlap-
ping regime at higher frequencies@Fig. 2~b!# is immediately
evident. For the case of nonoverlapping resonances we
formed about 600 measurements with different positions

FIG. 2. Parts of a typicalS11 spectrum after calibrating away th
effects of cables and connectors. At lower frequencies the r
nances are sharply separated whereas at higher frequencies
overlap.
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the region of well-separated resonances one can derive
the billiard equivalent of the Breit-Wigner formula a relatio
betweenuuinu2 and the measuredS11 at the maximum of the
resonances,

uuinu2}G@12Re~S11!#, ~37!

where G is the width of the resonance@4#. We fitted the
single resonances in the real part ofS11 with a Lorentzian
and extracted height and width of them to obtainuuinu2. In
total we obtained a sample of more than 12 000 values
uuinu2. The histogram of these values is shown in Fig. 3 a
compared to the theoretical curves for GOE and GUE a
the distribution~32! usingZ'1.17, calculated from the ex
perimentally obtained̂uuinu2&'0.72. The experimental dis
tribution fits very well to the theoretical one. It should b
noted that no parameter had to be fitted to obtain this ac
dance.

At higher frequencies where single resonances are
longer well resolved we can take the total spectrum for
determination of theS parameters. The calibration poses
problem. By application of standard procedures the influe
of cables, connectors, etc., is efficiently calibrated away. T
influence of the antenna wire itself, however, cannot be
moved by the calibration and results in a long range variat
of baseline and phase over several GHz. Apart from so
regimes, which were excluded from the further analysis,
drift of the phase could be corrected away by a polynom
background subtraction. It was not possible, however, to
criminate between phase drifts from the antenna and
phase shifts by the billiard. Therefore the determination
the phase ofS11 is necessarily erroneous. This can be seen
Figs. 4~a! and 4~b! where the distributions of
Re(S112^S11&) @Fig. 4~a!# and of Im(S11) @Fig. 4~b!# are
plotted. The error in the phase determination is respons
for the clear deviation of the distribution of Re(S112^S11&)
from a Gaussian. For Im(S11), on the other hand, the exac
expected Gaussian behavior is found though here of cou
too, the phase determination is incorrect. But as the ave

o-
hey

FIG. 3. Histogram of theuuinu2 values at low frequencies~non-
overlapping regime! in a semilogarithmic plot. The dashed and do
ted lines correspond to Poisson distribution (Z51, GUE! and
Porter-Thomas distribution (Z→`, GOE!, respectively. The solid
line depicts the distribution~32! with the parameterZ'1.17 calcu-
lated from^uuinu2&.
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56 2685DISTRIBUTION OF THE WAVE FUNCTION INSIDE . . .
of Im(S11) vanishes in contrast to that of Re(S11), an error in
the phase determination is not able to disturb the Gaus
behavior. It should be noted that errors in the phase do
fluence only the distribution of Re(S112^S11&), for all other
distributions discussed here this phase is not of relevanc

In Fig. 5 the histograms obtained from the measured sp
tra for the distribution of the internal wave functionuuinu2 for
@Fig. 5~a!# S11 ~reflection measurement! and @Fig. 5~b!# S12
~transmission measurement! in the region of overlapping
resonances are shown. The results are compared with
theoretical predictions~32! and ~27! with the parameter
Z'1.06 calculated from the mean value^S11&. As we did not
measureS22 we assumed̂S11&5^S22& to calculateZ from
Eq. ~28!. Since the geometries of the antennae are ident
this assumption seems to be plausible. In Figs. 4~c! and 4~d!
we show the distributions of Re(S12) @Fig. 4~c!# and
Im(S12) @Fig. 4~d!#. Again the Gaussian shapes are found
accordance with the theory.

The experiments have shown that the ansatz of rand
unitary matrices by Pereyra and Mello@12# for the scattering
matrix can perfectly account for the observed distribution
S matrix elements found in our microwave billiard~apart
from one point where imperfections in the calibration ma
the comparison impossible!. The change in theZ parameter
from Z51.17 in the case of separated resonances

FIG. 4. The distributions of real and imaginary parts
S112^S11& ~a! and ~b! and S12 ~c! and ~d!. All distributions are
normalized to have the variance equal to one. The solid lines
respond to the expected Gaussian behavior.
an
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Z51.06 in the case of overlapping ones shows further t
the presence of the 14 not used antennae closed byV
transforms the system from the GOE to, essentially, the G
behavior. In the region of overlapping resonances we fou
transmission and reflection behavior as being already es
tially a GUE-like~see Fig. 5!. In other words: the presence o
the drains in the form of closed antennae transforms
standing waves of the original billiard, more or less co
pletely, into running waves propagating from the entran
antenna to the different exit ports.
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r-

FIG. 5. Histograms ofuuinu2 for ~a! reflection (S11) and ~b!
transmission (S12) in a semilogarithmic plot. The dashed and dott
lines correspond to Poisson distribution (Z51, GUE! and Porter-
Thomas distribution (Z→`, GOE!, respectively. The solid line
gives the distribution~32! with the parameterZ'1.06 calculated
from ^S11&.
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