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Distribution of the wave function inside chaotic partially open systems
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We demonstrate both theoretically and experimentally that the distribution of the wave function inside a
partially open chaotic time reversal symmetric system displays significant deviations from the Porter-Thomas
distribution. We give arguments which show that this distribution resembles the distribution which is expected
to be found in closed chaotic systems with broken time-reversal symmgtt963-651X%97)05709-1

PACS numbes): 05.45+b

It is now generally accepted that in the ballistic regime the The S matrix maps the incoming waves into the outgoing
scattering on boundaries of a chaotic mesoscopic quantunes. Therefore knowing and the structure of the incoming
dot leads to irregular scattering phenomena which are meaart of the wave inside the leads one can easily evaluate the
surable during the transport of electrons through the dotyalue of the wave function at the points where the leads
Usually it is assumed that ideal leads are attached to thgoup|e to the resonator. Since we assume an ideal coupling
quantum dot and the conductar@eis evaluated using Lan- of the leads on the quantum dot the wave function is smooth
dauer formula relating the conductance with the corresponds; the coupling points. This means that the internal wave

ing S matrix function atthe coupling pointquals the wave function in-
side the leads. Therefore from a knowledge of the statistical
T t properties of theS matrix we can obtain information about
S=\., ., (1) ) . .
tor the properties of the internal wave function.

It is the aim of this work to develop the above heuristic
wherer,t are the reflection and transmission matrices. Inarguments and to show to what extent the transport through

terms of S matrix the conductance reads the dot changes the structure of the wave function. Let us
start with some remarks: the important role of the internal
g2 wave function during the transport through weakly open sys-

G= FTr(tt*). 2 tems(resonance transporas been used irl,2] to investi-

gate the statistical properties of the conductance. In these

Essentially the same mechanism can be applied also to tRgPers the applied strategy was however WSI. op_posne to
:what we try to do here: the conductance distribution was

transmission of microwaves through irregularly shaped cavi-"' " ) X S .
ties. In this cas& denotes the total transmission probability ©Ptainedassuminghat the internal wave function is chaotic

(of course in this case the facte?/h has to be omitted The and has a Porter-Thomas distribution. On the other hand,
microwave experiments have the advantage that all compdhere are also works which followed the same strategy and
nents of the scattering matrix are obtained directly from theused the measured matrix to determine the internal wave
measurement, and that scattering geometries can be easfynction, see for instanck,4]. It has to be stressed, how-
varied in a controlled manner. Therefore the results to be&ver, that in all these cases the investigations are restricted to
derived below will be tested using results from microwavethe resonance scattering regime and the influence of the
cavities containing randomly distributed scatterers. transport on the structure of the internal wave function has
Investigating conductance fluctuations the standard arguseen neglected.
ment assumes that tH® matrix belongs to some random  To begin the investigation let us first construct a simple
matrix ensembldusually the circular orthogondCOE) or  Hamiltonian which leads to th& matrix usually being used
unitary (CUE) ensemblé¢ There is, however, also another as a starting point for the description of transmission fluctua-
aspect of the statistical properties of tBematrix elements tions. Starting with the description of the leads we assume
which relates theS matrix elements with the internal wave that they supportM open channels and are described by
function. one-dimensional Hamiltonians
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d2 Using these solutions we define a finite dimensional inter-
Hi=——+\, [=1,... M. 3 nal Hamiltonian acting on the space spanned by the Nrst
dx eigenstates off e,
Here \, is the threshold energy of thigh channel andk N
denotes the coordinate along it. Combining these operators Hin= E Enfnfg. 9
into a HamiltoniarH, for the “external” part of the system n=1
we get The coupling operatoA maps the vectou’(0) into a
42 certain function belonging to th& dimensional internal
Ho= —1— +A, (4) space. Letu(x)=[uq(x),us(x), ..., uy(x)] denote the
dx? components of the wave function in the attached open chan-

nels. Applying the matribA to the incoming vector we get
whereA is a diagonal matrix describing the threshold ener-
gies of the channels, MoX
AU(0)= X X Up(0)Anfy
A=diag Xy, Aa,s - Ay, (5) m=1n=1

_ N/ 2N N/ 2N
and 1 is the M XM identity matrix. The resonator is de- = ad1(Nu; (0)+ aadz(r)uz(0)

scribed by a Hermitian matri;, of size NXN, whereN +... +aMd',\“A(F)u,(A(O), (10)
corresponds to the number of eigenenergies taken into ac-

count, withN much larger than the number of open channelsyhere o, dN=3N_, A, f,; a1, ... ay are the coupling con-
N>M. The matrixH;, is assumed to belong to the Gaussiangiants of the individual channels ami{i‘, I=1,... M are

orthogonal or unitary ensembl&OE or GUE for chaotic  ,1ctions spanned by the vectdrs,n=1, ... N. In the ex-

cavities (see, e.g.[5] for these concepts To describe the oriment the channels are locally coupled to the resonator at
scattering we couple the resonator and leads by defining the . . - - - - .
HamiltonianH of the whole system as pointsry, ....My. I-_|erer1, ...,y refer to the coordinate
system chosen inside the resonator and correspond to the
zero points of the coordinates inside the leads. In order to

, (6)  mimic this local coupling we choose the functions

P
Uin - Hinuin+Au/(0)

d{\'(F),I =1,... M in a special way which ensures their con-
whereu=(uy, ... Uy) stands for the wave function inside vergence tos(r—r,) for N—o, namely
the leads and;, describes the wave function within the reso- N
nator.u’(0) denotes the vector of derivatives of the wave N YRS
functions inside the leads taken at the points of contacts with dir) igl firTi(r). (1)

the resonatofi.e., at zero of each lead coordinata is the _ _
NXM coupling matrix. Later on we will specify the cou- In the sense of generalized functions one has
pling matrix A by assuming that the coupling has a local limy_..dN(r)=&(r —r,).
characte(point contacts This assumption is justified when- At this point few remarks are necessary: First of all it has
ever the diameter of the junction is smaller than a typicako be stressed that now the coupling matixs completely
wavelength inside the resonator. determined byM constantsy,, . . . @y . The boundary con-
Let us now return to the Hamiltonia. In the form itis  dition (7) now takes the fom(alle Uiy =—Uu,(0), where
given by Eq.(6) the operator is not symmetric. To make it ( ) denotes the scalar product in thedimensional Hilbert
symmetric an additional boundary condition is needed: space of functions inside the resonator. In the liit>x
+ these boundary conditions are thus given by the formula
A'u;,=—u(0). (7)

It is not difficult to show that under these conditions the aUin(r) = —u(0), (12

HamiltonianH is a self-adjoint operator — for the proof see hich relates the internal wave function at the coupling point
[6]. } ) to the wave function inside the corresponding lead. If we
Before proceeding further we have to specify the structurgyssyme that the contact is ideal, i.e., that the wave functions

of the internal Hamiltonian matrikl;,. On the most general >y ;
) i match smoothly at the contaat,,(r;)=u;(0), we obtain
level we assume only that this matrix belongs to the Gauss- y Qi (1) =y (0)

ian orthogonalunitary) ensemble. Less abstractly it will be, «=-1 fo'f alll. The components of the coupling matix
. . i are then given by

however, helpful to construct this matrix using the knowl-

edge of the specific properties of the resonator in consider- A= — (1) (13)

ation. To specifyH;, we use the Hamiltoniam,s of the m ms

resonator(usually a two-dimensional Laplac§ operator with Equation(12) becomes a starting point for a further con-
Dirichlet boundary conditions Let E,, andf(r) be the ei- sideration of the statistical properties of the internal wave
genvalues and eigenfunctions lef,, function.
Since the information about the structure of the internal
Hresfn(F) = Enfn(F). (80  wave function is hidden in the scattering data we have first to
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evaluate the correspondir®@matrix. Following[6] we solve Uin(Fy)
the equatiorHU =EU for a scattering energl. The eigen- " .
function Uin(T2)
T = QS 1) i (2D
u(E,x) R
E)= (14) Uin(T )
Uin

) Relation(21) is valid not only for the case of a resonant
solves the equations scattering but also in situations with many overlapping reso-
nances. This can be understood when the formula is com-

d? E.x) pared with previous results, where a relation between the
N EU(E’XHAU(E’X) — E( u(E.x ) (15) resonance wave function and tBematrix was obtained for
in the case of onesolated resonancg1,2,4. Relation (21)
HinUin(E) + AU’ (E,0) gives us the possibility to look for the structure of the inter-
] ) _ i nal wave function in situations where tBamatrix belongs to
_ For energie>)\;,j=1,... M, the scattering solution ¢ertain ensembles of random unitary matrices.
inside the leads can be presented in the form In a typical experiment the wave is fed into the resonator

through one of the attached channels — say through the first
one — and the wave function is measured either by measur-

e
4 /—E_AA"‘C_ 4 /—E_AAOL“’ ing the reflection in the entrance lead or the transmission to
an exit lead. This means that,,.= (1,0, ...,0) and

where A, Ay, are the amplitudes of the incoming and out- 1

going waves, respectively. I_:or &>max{\;} every solution um(;k): 1/4(51k_ 51 (22)

is bounded and the scattering mat84E) can easily be de- (E—N\y)

fined. The normalization used in E(L6) ensures that the

S matrix relates the amplitudes of the incoming and outgoingvith k=1 in the reflection case arid>1 in the transmission

waves as case. Assuming\, to be constanfi.e., not varying from
sample to sampjewe obtain finally that the statistics of

Aour= S(E) Ajnc - (170 uy(r,) coincides with the statistics of tf®matrix elements
. . - Sik-
The scattering matrix can be calculated substituting Eq. |t is widely accepted that the structure of tBematrix of
(16) into Eq. (15) and applying the boundary conditidid)  a chaotic system with time-reversal symmetry is described

—iVE=AX ei VE—AX

u(E,x)= (16)

which leads to by a generalized circular ensemligg®-called Poisson kernel
introduced by Gaudin and Mell@8], see als¢9]. The struc-
i+W'(E—H;) W ture of this ensemble is fully determined by the mean value
S(E)= i~ WI(E—H,) W’ (18) (S) of the S matrix. The mean value describes the “quality”
n

of the contact. It is related to the coupling matvk by [10]
whereW=AQ ! and Q=Q(E) denotes thevl X M matrix

1_
Q(E)=(E—A) Y4 This S matrix can be rewritten g$] (S))= 1+—;" (23
|
S(E)=1-2iw?" W, (19) with vy, given by
E—Hex N
where Hey=H;,+iWW' stands for the effective, non- n§=:1 WhiWmn= Sim¥m- (24)
Hermitian Hamiltonian. The assumption on the point charac-
ter of the contact leads in the IlimitN—o to Note that the orthogonality relatiai24) follows from Eq.

He= Hres+i2nM:1aﬁ\/E—)\n5(F— Fn). Effective Hamilto- (13) and is satisfied whenever the distance between the cou-
nians of this type has been used previously on a heuristipling points exceeds the typical wavelength in the scattering
level in[1] for the description of conductance fluctuations in problem. In the case of ideal coupling we hg\# =0 and
guantum dots. In the present case, however, the coupling ¢fie ensemble coincides with the circular orthogonal en-
the imaginary effective potential depends on eneffjg-  semble of Dyson. The relation between the Poisson kernel
qguency of the incident wave. This fact has been observedand S matrices of the form(18) is described irj11].

experimentally in7]. The statistics of the correspondiggmatrix elementss,,
For the value of the external componan(E,x) at the was evaluated ifil2]. It was shown that for sufficiently large
coupling points we get from Eq10) M the S matrix elements can be regarded as statistically
independent. Moreover the real and imaginary pafgefre
U(E,0)=Q(1-9S) Ajnc, (20 independent Gaussian distributed variables.

Let us first consider a measurement of the transmission
and finally from Eq.(12) a relation between th® matrix and  between leads 1 and 2. DenotiBg,=X+iY and following
the internal function: [12] we obtain
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P(Sy,) = @eaxzebY2 (25)
with a,b given by
A 1+(S1(S22)
(1=(S192)(1—(S»?)
(26)

1-(S1)(S,
= (S1(S22 , FIG. 1. Rectangular billiard45 cm X 20 cm, height 0.8 cin
(1=(S1A)(1=(S0)?) i i iti
1 with 13—17 movable scatterers of diameter 2 cm positioned at ran-

dom on a 1& 8 grid. There are 16 fixed antenn@®pper wires of

and(S,4),(Syo) being the mean values of the correspondinggiameter 0.2 mm connected to the billiard at randomly chosen
matrix elementsthey are assumed to be real for simpli¢ity points with a minimum distance of 2.5 cm.

Finally using Eq.(22) we obtain for the distribution of the

modulus of the normalized internal wave function at pa?'mt In the COE case witkiS) = 0 (ideal coupling of channels
[13] bot_h distributiong27) and(32) lead to the Poissonian distri-
P(unf2) = Zexd — ZunDIoZVZZ—Tlun®) (@7 °Uon
e P(Juinl?) = exp( = [uj|?). (34)
2= : ' (28) In the other extreme case of ver ki led chan-
V1-(S1X(S0)? y weakly coupled chan

nels for which we havéS;;)~(S,;)~ =1 and henc& —»,
A similar relation holds also for the reflection measure-Which reduces Eq(27) to the Porter-Thomas distribution

ment. The internal wave function is studied using the matrix
elementS,;; which measures the direct reflection of the wave

into the incoming channel. For the distribution of P(|uy|?) = 1 exp{ _ |uin|2)_ (35)
S1=X+iY one had12] " 2a(ug? 2
ab 2 2
P(Sp)= gea<x<x>) e (29 The same holds also for the distributiof82) with
with the coefficientsa,b given by It is worth stressing that in the COE case the distribution
of the internal wave function coincides with the distribution
1+(Spy)? of eigenvectors of an GUE ensemble, i.e., with a case of
= — fully broken time-reversal symmetry.
(1-(S1?? For a smaller number of channels the distribution of$he

(30 matrix elements does not factorize and the distribution of the
internal wave function cannot be found explicitly. Neverthe-

1 less it becomes clear that it depends strongly on the number
= —1—<S 1>2 of open channels. For instance in the case of two ideally
1 coupled channel§COE casgwe obtain from[14]

and with(S;;)=(X) denoting the mean of th® matrix ele-
ment. Using that we get for the distribution of the normalized

. X 1
internal wave function P(|up|?) = ———. (36)
| |n| 2 —277|um|2
(Uin)=1—(Sy) (31
and for the distribution ofij,= uy,— (U;n) Microwave billiards are especially well suited to test the

predictions on distributions of th& matrix elementysee
=~ 12y 92| )2 2117 |2 Egs.(25) and(29)] and of transmission and reflection prob-
P(Juil®) =2Zexp( =2 unl ) o(Zv2" = 1fuwl®) (32 abilities[see Eqs(27) and(32)]. All quantities entering into
with Z equal to these expressions are directly available from the experiment.
It is of special importance that there are only two parameters,
1 namely the average&S;;) and (S,,). As these quantities,
I=—— (33)  too, can be measured, there is no free adjustable parameter in

Vi—(S;)* the theory.
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FIG. 3. Histogram of théu;,|? values at low frequencie@on-
overlapping regimein a semilogarithmic plot. The dashed and dot-
ted lines correspond to Poisson distributioA=(1, GUE and
Porter-Thomas distributionZ(—, GOB), respectively. The solid
line depicts the distributio32) with the parameteZ~1.17 calcu-
lated from{|u;,|?).
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ten scatterers from 2 to 4 GHz with a resolution of 1 MHz. In
the region of well-separated resonances one can derive from
the billiard equivalent of the Breit-Wigner formula a relation
between|u;,|?> and the measure§,; at the maximum of the
resonances,

Im(S,,)

0.0

-0.2

-0.4 . . A
12.5 13.0 13.5 14.0
frequency (GHz)

g
w

|Uin*>T[1-Re&(Sy)], (37

FIG. 2. Parts of a typic spectrum after calibrating away the . . .
effects of cables andyiorfllelctgrs. At lower frequenc?es th)(la reso\/_\{heref‘ s the Wld.th of the resonanc[eﬂf;l. We fitted t_he
nances are sharply separated whereas at higher frequencies th%")?gle resonances in the ref"" part®j with a Lo_renthIan
overlap. and extracted height and width of them to obtfig“. In

total we obtained a sample of more than 12 000 values for

|uin|2. The histogram of these values is shown in Fig. 3 and

The measurements were performed in a rectangular meompared to the theoretical curves for GOE and GUE and
crowave resonator with 10—17 randomly distributed scatterthe distribution(32) usingZ~1.17, calculated from the ex-
ers; Fig. 1 shows a typical arrangement. The number of scaperimentally obtained|u;,|?)~0.72. The experimental dis-
terers should be sufficient to block most of the bouncing ballribution fits very well to the theoretical one. It should be
modes in order to make the system chaotic; on the othenoted that no parameter had to be fitted to obtain this accor-
hand, the mean distance should be at least of the order of thitance.
typical wavelength. The measuring technique was described At higher frequencies where single resonances are no
earlier[15,4]. A vector network analyzer, model 360B, Wil- longer well resolved we can take the total spectrum for the
tron company, was used supplying real and imaginary partdetermination of theS parameters. The calibration poses a
of all components of th& matrix. problem. By application of standard procedures the influence

To study the transport through the resonator 16 antennagf cables, connectors, etc., is efficiently calibrated away. The
(thin copper wires of diameter 0.2 mmvere put into the influence of the antenna wire itself, however, cannot be re-
resonator. The antennae act as single scattering channelsrasved by the calibration and results in a long range variation
their diameter is small compared to the wavelength in theof baseline and phase over several GHz. Apart from some
total frequency range. Only two antennae were really usetegimes, which were excluded from the further analysis, the
for reflection and transmission measurements. Through thdrift of the phase could be corrected away by a polynomial
antenna 1 microwaves are coupled to the resonator and rbackground subtraction. It was not possible, however, to dis-
flection (S;;) is measured. The transmissio8,§) is mea- criminate between phase drifts from the antenna and real
sured with the help of the antemr2 . All other antennae not phase shifts by the billiard. Therefore the determination of
used are closed by $Dloads and act as drains for the mi- the phase 08,; is necessarily erroneous. This can be seen in
crowaves. Figs. 4a) and 4b) where the distributions of

In Fig. 2 parts of a typical measures}, spectrum are Re(S;;—(S;1)) [Fig. 4a@] and of Im(S,y) [Fig. 4b)] are
shown. The qualitative difference between the nonoverlapplotted. The error in the phase determination is responsible
ping regime at lower frequenci¢Big. 2(a)] and the overlap- for the clear deviation of the distribution of R&G— (S;1))
ping regime at higher frequencig€sig. 2(b)] is immediately from a Gaussian. For In§;,), on the other hand, the exact
evident. For the case of nonoverlapping resonances we peexpected Gaussian behavior is found though here of course,
formed about 600 measurements with different positions ofoo, the phase determination is incorrect. But as the average
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FIG. 4. The distributions of real and imaginary parts of
S;1— (S (@ and (b) and S, (c) and (d). All distributions are 0.01
normalized to have the variance equal to one. The solid lines cor-
respond to the expected Gaussian behavior.

of Im(S;;) vanishes in contrast to that of R&¢), an error in

the phase determination is not able to disturb the Gaussian _ ) _
behavior. It should be noted that errors in the phase do in- FIG. 5. Histograms Oqui"| .for _(a) reflection G,,) and (b)
fluence only the distribution of R&,—(S,1)), for all other transm|55|on %) in ase.mlloga.rlth‘mlc.plot. The dashed and dotted
distributions discussed here this phase is not of relevance lines Corre.Spc.md to Poisson d'smbuuozzél.‘ GUB and Porter-

In Fig. 5 the histograms obtained from the measured Spe. Thomas distribution Z—cc, GOB), respectively. The solid line

IR . ) Cglves the distribution(32) with the parameteZ~1.06 calculated
tra for the distribution of the internal wave functiom,|* for ¢ (S
[Fig. 5@] S;; (reflection measuremenand[Fig. 5b)] S;, wr
(transmission measuremgnin the region of overlapping
resonances are shown. The results are compared with t
theoretical predictiong32) and (27) with the parameter
Z~1.06 calculated from the mean val(®,,). As we did not
measureS,, we assumedS,;)=(S,,) to calculateZ from
Eq. (28). Since the geometries of the antennae are identica
this assumption seems to be plausible. In Figs) 4nd 4d)
we show the distributions of R8(,) [Fig. 4(c)] and
Im(S;,) [Fig. 4d)]. Again the Gaussian shapes are found in
accordance with the theory.

The experiments have shown that the ansatz of rando
unitary matrices by Pereyra and Mellb2] for the scattering
matrix can perfectly account for the observed distribution of This research was partially supported by the Foundation
S matrix elements found in our microwave billiafdpart for Theoretical Physics in Slemeno, Czech Republic and by
from one point where imperfections in the calibration makethe Deutsche Forschungsgemeinschaft via the SFB 185
the comparison impossibleThe change in th& parameter Nichtlineare Dynamik. M.K. acknowledges the support from
from Z=1.17 in the case of separated resonances t®olish KBN Grant No. 2 PO3B 093 09.

|}e= 1.06 in the case of overlapping ones shows further that
the presence of the 14 not used antennae closed by 50
transforms the system from the GOE to, essentially, the GUE
ehavior. In the region of overlapping resonances we found

fansmission and reflection behavior as being already essen-
tially a GUE-like (see Fig. %. In other words: the presence of
the drains in the form of closed antennae transforms the
standing waves of the original billiard, more or less com-
rﬁletely, into running waves propagating from the entrance

antenna to the different exit ports.
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